
Forta Staking
Vault Audit

| security

March 11, 2024

Table of Contents
Table of Contents __    2

Summary ___    4

Scope __    5

System Overview __    6

Security Model and Trust Assumptions ___    7
Privileged Roles 7

Critical Severity __    8
C-01 Incomplete Implementation of ERC-4626 Base Contract Leading to Asset Management and Usability Issues 8

High Severity __    8
H-01 Attacker Can Stall Undelegations 8

Medium Severity ___    10
M-01 Lack of Event Emissions 10

M-02 Unbounded Loops in Redeem Function May Cause DoS 10

M-03 Wrong and Incomplete Docstrings 11

Low Severity __    12
L-01 Tokens Trapped in the Vault Might Cause Redemptions to Revert in Low FORT Liquidity Scenarios 12

L-02 Not Checking if There Are Assets in the Vault to Redeem 12

L-03 Lack of Input Validation 13

L-04 Missing Return Values in Functions Impair Protocol Integration and Information Flow 13

L-05 Redundant State Variable 14

L-06 Inadequate Visibility of State Variables in RedemptionReceiver Contract 14

L-07 Insufficient Code Coverage 15

L-08 Duplicate Utilization of FortaStakingUtils Library 15

L-09 Insufficient Project Information in README.md 16

Notes & Additional Information __    16
N-01 Lack of Security Contact 16

N-02 Inadequate Function Visibility 17

N-03 The Implemented Access Control Presents Potential Risks for the Vault 18

N-04 Multiple Instances of Missing Named Parameters in Mappings 18

N-05 Dependency on Polygon Mainnet Fork for Testing 19

N-06 Usage of msg.sender and _msgSender 19

N-07 Typographical Errors 20

N-08 Inconsistent Licensing 20

Forta Staking Vault Audit − Table of Contents − 2

N-09 Gas and Code Optimizations 21

Conclusion __    22

Forta Staking Vault Audit − Table of Contents − 3

Type DeFi

Timeline From 2024-02-05
To 2024-02-09

Languages Solidity

Total Issues 23 (15 resolved, 3 partially resolved)

Critical Severity
Issues

1 (1 resolved)

High Severity
Issues

1 (1 resolved)

Medium Severity
Issues

3 (1 resolved, 1 partially resolved)

Low Severity Issues 9 (8 resolved)

Notes & Additional
Information

9 (4 resolved, 2 partially resolved)

Summary

Forta Staking Vault Audit − Summary − 4

Scope
We audited the NethermindEth/forta-staking-vault repository at commit

ce87cffbf813e27cc83157933760b51fa44a1885.

In scope were the following files:

src/
├── FortaStakingVault.sol
├── InactiveSharesDistributor.sol
├── RedemptionReceiver.sol
├── interfaces
│ ├── IFortaStaking.sol
│ └── IRewardsDistributor.sol
└── utils
 ├── FortaStakingUtils.sol
 └── OperatorFeeUtils.sol

Forta Staking Vault Audit − Scope − 5

https://github.com/NethermindEth/forta-staking-vault
https://github.com/NethermindEth/forta-staking-vault/tree/ce87cffbf813e27cc83157933760b51fa44a1885

System Overview
The Forta Staking Vault project introduces a suite of contracts designed to enhance the user

experience of delegating, undelegating, redeeming, and claiming assets in Forta Protocol

pools. By utilizing the Forta Staking Vault, users can deposit assets into the system and

redeem them later without having to engage directly in the delegation process. The delegation

and undelegation processes are managed by a newly introduced role, the operator, who

determines to which pools and for how long will assets be staked. The Forta Staking Vault is an

extension of the upgradeable version of the ERC-4626 contract from the OpenZeppelin

contracts library.

The workflow is as follows:

Users deposit FORT tokens into the FortaStakingVault contract and in return

receive shares that represent those tokens.

The operator delegates some or all of the FORT tokens deposited by users to one or

more pools of the FortaStaking contract. When assets are delegated, they are

labeled as "active shares" in the FortaStaking contract.

The operator can initiate the undelegation process for some or all of the FORT tokens

delegated to one or more pools. This action triggers a cooldown period that is recorded

in the vault for each pool from which tokens will be undelegated, creates a new

InactiveSharesDistributor contract, and sends the corresponding Forta staking

shares to initiate the withdrawal and transforms those shares into "inactive shares". Until

the cooldown period expires, these assets cannot be withdrawn from the

InactiveSharesDistributor contract.

Once the cooldown period expires, anyone can trigger the undelegation process for a

specific pool that already has an InactiveSharesDistributor contract created,

which transfers all the FORT tokens back to the vault for later redemption by users.

Users can then redeem and claim their assets. Notably, users can also redeem their

assets before the cooldown period has expired. In this case, they will initially redeem a

proportion of the assets they hold from the available balance of FORT tokens in the vault

and will be able to claim the remaining assets after the cooldown period expires for all

the subjects where their assets were being staked. Finally, a fee can be charged when

redeeming and claiming assets, which is then sent to a fee treasury set by the admin of

the vault.

•

•

•

•

•

Forta Staking Vault Audit − System Overview − 6

Aside from the FortaStakingVault contract, two other contracts have an important role in

the system:

RedemptionReceiver

Each vault user eventually will have their own RedemptionReceiver contract. This contract

is responsible for managing redemptions and claims for the user. It keeps track of all pools with

active shares that are ready to be withdrawn from the FortaStaking contract, as well as all

distributors holding inactive shares that are either undergoing the cooldown period or are ready

for withdrawal.

InactiveSharesDistributor

This ERC-20 contract is responsible for distributing assets to both the vault and the users'

RedemptionReceiver contracts. Whenever the operator initiates the undelegation process

for a specific FortaStaking pool, a new instance of the InactiveSharesDistributor

is deployed. This means that for each pool, there could be one or more

InactiveSharesDistributor instances, each potentially holding assets to distribute.

Security Model and Trust
Assumptions

Privileged Roles
There are two privileged roles in the system:

DEFAULT_ADMIN_ROLE : In charge of setting the redemption fee and the treasury

address as well as managing roles defined in the system, using OpenZeppelin's

AccessControlUpgradeable contract. Initially set as the deployer of the vault.

OPERATOR_ROLE : In charge of delegating and initiating the undelegation process of

FORT tokens to different FortaStaking pools. Initially set as the deployer of the vault.

Based on our discussions with the Forta Team, the operator and admin roles will be initially

managed by them and the governance council.

•

•

Forta Staking Vault Audit − Security Model and Trust Assumptions − 7

Critical Severity

C-01 Incomplete Implementation of ERC-4626
Base Contract Leading to Asset Management
and Usability Issues
The vault contract's adaptation from the ERC-4626 standard demonstrates critical flaws in

asset management and functionality due to incomplete overrides of essential functions. Initially,

the primary concern centers around the mint function. When users invoke the function, the

contract correctly emits shares. However, it fails to update the _totalAssets variable and the

pool's asset holdings. This discrepancy leads to a significant issue: the vault's asset tracking

becomes inaccurate, which in turn will result in incorrect calculations when users attempt to

redeem their shares.

Similarly, the omission of an override for the withdraw function can lead to transactions

reverting when users attempt to execute withdrawals. Although this issue has a minor direct

impact compared to the asset management flaw, it contributes to a degraded user experience,

potentially deterring user interaction with the contract.

Consider modifying the mint and withdraw functions from the ERC-4626Upgradeable

contract within the FortaStakingVault contract to accurately reflect withdrawn and minted

assets in the _totalAssets variable.

Update: Resolved in pull request #22.

High Severity

H-01 Attacker Can Stall Undelegations
The process of undelegating assets from a subject in the FortaStakingVault contract

requires two steps:

Firstly, the operator triggers the undelegation process by calling the

initiateUndelegate function, which deploys a distributor instance, an ERC-20 token. The

Forta Staking Vault Audit − Critical Severity − 8

https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L47
https://github.com/NethermindEth/forta-staking-vault/pull/22
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L201
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L201
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L209

vault transfers its FortaStaking shares in the given subject to the distributor, and in return,

receives minted distributor tokens that represent its position and are equivalent to the

FortaStaking shares transferred to the distributor contract. The distributor also initiates the

withdrawal of the assets in the FortaStaking contract and the waiting period is stored in

the Vault for that particular subject.

Secondly, once the waiting period passes, users are permitted to call the undelegate

function to undelegate all the staked tokens of a specific subject by the vault. However, a

problem arises when calculating the amount of FORT tokens to be sent from the distributor

back to the vault. Instead of using the amount returned by the withdraw function from the

FortaStaking contract, the balance of FORT tokens held by the distributor will be used

instead which can be manipulated since anyone can send FORT tokens to the distributor.

If this occurs, the undelegate function will revert when attempting to subtract the assets

delegated to the given subject since the amount subtracted will be greater than the one

tracked in the _assetsPerSubject variable. This implies that the funds deposited in the

distributor will become inaccessible and any subsequent attempts to invoke the undelegate

function for that particular subject will fail.

Nonetheless, this is not irreversible as the operator can allocate additional tokens to the

subject, thereby increasing the _assetsPerSubject amount to prevent an underflow.

However, it may take some time before the Forta team notices this problem and the attacker

could front-run any future delegations to put the undelegation process in a stalled situation

again. A step-by-step proof-of-concept for this scenario can be found in this secret gist.

Consider using the amount returned by the withdraw function from the FortaStaking

contract instead of the balance of FORT held by the distributor.

Update: Resolved in pull request #24.

Forta Staking Vault Audit − High Severity − 9

https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L65
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L65
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L74
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L74
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L75
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L75
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L259
https://gist.github.com/jbcarpanelli/6712c1c882e30263d6e34e08b4808f9b
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L74
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L74
https://github.com/NethermindEth/forta-staking-vault/pull/24

Medium Severity

M-01 Lack of Event Emissions
The following functions do not emit relevant events after executing sensitive actions or

modifying storage variables:

The updateFeeBasisPoints function should emit a FeeBasisPointsUpdated

event. This event should also be emitted in the initialize function.

The updateFeeTreasury function should emit a FeeTreasuryUpdated event. This

event should also be emitted in the initialize function.

The delegate function should emit a StakeDelegated event.

The redeem function should emit a StakeRedeemed event.

The deposit function should emit a StakeDeposited event.

The claimRedeem function should emit a StakeClaimed event.

The undelegate function should emit a StakeUndelegated event.

The initiateUndelegate function should emit an UndelegateInitiated event.

Consider emitting events following sensitive changes, including the initial event emission in the

constructor where appropriate, and incorporating relevant parameters. This approach will

facilitate tracking and alert off-chain clients monitoring the contracts' activity.

Update: Partially resolved in pull request #28. The Forta team stated:

Only added the first two suggested and one for redeem . Other functions have plenty of

underlying events that can be used for the same, either events of the ERC-4626 or

events of FortaStaking , with the exception of redeem which is not calling the

ERC-4626 implementation.

M-02 Unbounded Loops in Redeem Function May
Cause DoS
When multiple delegations exist within the vault, the redeem function's iteration through

various subjects and distributors introduces a risk of Denial of Service (DoS) for users. Due to

the unbounded nature of these loops, a scenario with numerous delegations and distributors

could result in exceeding Polygon's 30 million gas limit upon execution of the redeem

•

•

•

•

•

•

•

•

Forta Staking Vault Audit − Medium Severity − 10

https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L434
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L434
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L423
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L423
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L179
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L179
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L276
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L276
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L201
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L201
https://github.com/NethermindEth/forta-staking-vault/pull/28
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294

function. Although this issue is temporary, it has the potential to significantly degrade user

experience.

Consider implementing a limitation on the maximum number of delegations permitted, thereby

preventing such undesirable situations.

Update: Acknowledged, not resolved. The Forta team stated:

Acknowledged. DoS can only be done by the operator who should know and be

cautious about it.

M-03 Wrong and Incomplete Docstrings
Throughout the codebase, there are several parts that have wrong or incomplete docstrings:

The documentation for the undelegate method within the

InactiveSharesDistributor contract inaccurately states that vault shares are

transferred to the vault. In reality, these shares are burned and it is the FORT tokens that

are sent to the vault instead. In addition, the documentation for the claim function

misleadingly indicates its use for claiming a portion of the inactive shares owned by

individuals, whereas it actually facilitates the claiming of FORT tokens.

The initiateUndelegate , getRedemptionReceiver , and claimRedeem

functions in FortaStakingVault.sol do not have their return values documented.

The initiateUndelegate and claim functions in

InactiveSharesDistributor.sol do not have their return values documented.

The claim function in RedemptionReceiver.sol does not have its parameters nor

return values documented.

The redeem and deposit functions use inheritdoc tags to reference

ERC4626Upgradeable docstrings but fail to delineate the modifications from the

original implementation.

Consider thoroughly documenting all functions/events (and their parameters or return values)

that are part of any contract's public API. When writing docstrings, consider following the

Ethereum Natural Specification Format (NatSpec).

Update: Resolved in pull request #26.

•

•

•

•

•

Forta Staking Vault Audit − Medium Severity − 11

https://github.com/NethermindEth/forta-staking-vault/tree/ce87cffbf813e27cc83157933760b51fa44a1885/
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L73
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L73
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L94
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L94
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L201-L225
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L201-L225
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L400-L402
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L400-L402
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383-L386
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383-L386
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L64-L67
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L64-L67
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L94-L103
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L94-L103
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L76-L117
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L76-L117
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L276
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L276
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/NethermindEth/forta-staking-vault/pull/26

Low Severity

L-01 Tokens Trapped in the Vault Might Cause
Redemptions to Revert in Low FORT Liquidity
Scenarios
The redeem function enables users to redeem their staked FORT tokens—or someone else's

on their behalf. This function calculates the redeemer's share of the total vault assets and uses

this proportion to transfer active staking tokens and distributor shares from the vault to the

redemptionReceiver . This allows the user to later claim them through the claimRedeem

function when available. Finally, it transfers the corresponding proportion of available FORT

tokens in the vault that have not yet been delegated, utilizing the FORT token's balanceOf

function for this purpose.

However, during this final operation, if extra tokens are present in the vault—whether they were

directly sent to the contract by mistake or otherwise—these tokens will be included in the

calculation when deducting the assets transferred to the user from the _totalAssets

variable. Notably, the _totalAssets variable does not account for tokens directly

transferred to the vault. Consequently, this discrepancy may lead to the redeem function

reverting due to an underflow, especially when the last few users attempt to redeem tokens

from the vault. A step-by-step proof-of-concept for this scenario can be found in this secret

gist.

Consider accounting for all mistakenly sent FORT tokens in the vault in the _totalAssets

state variable. Otherwise, consider implementing a sweep function that withdraws the token

amount difference between _totalAssets and the actual balance reported by the FORT

token contract's balanceOf function.

Update: Resolved in pull request #30.

L-02 Not Checking if There Are Assets in the
Vault to Redeem
The redeem function in the FortaStakingVault contract allows users to redeem FORT

tokens in exchange for shares. This function calculates the proportion of assets to be claimed

through the claim function for those assets that are either active or inactive and calculates

the same proportion of FORT tokens present in the vault for immediate withdrawal. However, in

Forta Staking Vault Audit − Low Severity − 12

https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L317-L326
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L349-L356
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L372
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L372
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L373
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L373
https://gist.github.com/jbcarpanelli/555279fc3e48614ee070db45d9e0820f
https://gist.github.com/jbcarpanelli/555279fc3e48614ee070db45d9e0820f
https://github.com/NethermindEth/forta-staking-vault/pull/30
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L294
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L317
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L350
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L367

the case that all the FORT tokens have been delegated and there are no FORT tokens present

in the vault, the redeem function will still transfer 0 tokens.

To avoid unnecessary operations and extra gas costs, consider checking whether there are

assets in the vault to be transferred to the user in the redeem function.

Update: Resolved in pull request #32.

L-03 Lack of Input Validation
Throughout the codebase, there are some instances in which the lack of input validation could

lead to different undesired scenarios:

The delegate function allows the operator to delegate zero assets to the subject.

When a subject has no assets, The subject will be added to the subjects array without

the ability to remove it through the undelegate function due to the absence of active

shares. Attempting to fix this by delegating assets to the same subject to enable the

undelegate functionality would add the subject to the array again.

In the initialize function, there are no checks to validate that the feeTreasury is

not the address 0 and that the feeInBasisPoints is lower than the

FEE_BASIS_POINTS_DENOMINATOR variable, as it happens in the

updateFeeTreasury and updateFeeBasisPoints functions respectively, which is

inconsistent.

Consider implementing input validations in functions where parameters must be confined

within specific boundaries. Furthermore, ensure that variables used across different functions

are checked against the same boundaries to maintain consistency and integrity.

Update: Resolved in pull request #34 at commit 959e20a.

L-04 Missing Return Values in Functions Impair
Protocol Integration and Information Flow
The undelegate function allows anyone to undelegate FORT tokens from the

FortaStakingVault contract. However, this function does not return the amount of FORT

tokens being withdrawn from the FortaStaking contract (through the undelegate

function in the InactiveSharesDistributor contract), making it difficult for users to

easily track how many tokens have been withdrawn, either off-chain or within a contract that

calls the undelegate function and needs to store it.

•

•

Forta Staking Vault Audit − Low Severity − 13

https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L372
https://github.com/NethermindEth/forta-staking-vault/pull/32
https://github.com/NethermindEth/forta-staking-vault/tree/ce87cffbf813e27cc83157933760b51fa44a1885/
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L179
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L179
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L182-L184
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L69
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L69
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L423
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L423
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L434
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L434
https://github.com/NethermindEth/forta-staking-vault/pull/34
https://github.com/NethermindEth/forta-staking-vault/pull/34/commits/959e20a1e4f80a3a5ec2ecdd30569f40ba644a74
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L73
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L73
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L73
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L73

A similar situation happens with the delegate function. It allows the operator to stake a

given amount of previously deposited FORT tokens for a given subject to the FortaStaking

contract through the deposit function. However, although deposit returns how many

shares those tokens represent, and delegate has access to it, this value is not returned to

the caller.

To avoid hindering off-chain operations and to make the vault more easily integrated with other

contracts, consider returning the amount of FORT tokens withdrawn for the former and the

amount of shares minted by the FortaStaking contract for the latter.

Update: Resolved in pull request #36.

L-05 Redundant State Variable
Throughout the codebase, one variable duplicate another already defined, accessible state

variable:

The FortaStakingVault contract defines the private _token state variable to track

the underlying asset address. However, since this contract inherits from the

ERC4626Upgradeable contract, it already has access to this address through the

asset function.

Even though introducing this duplicate variable does not pose any security risk, it is

unnecessary, error-prone, and can confuse developers and auditors.

To improve clarity and adhere to best practices in smart contract development, consider

removing this variable and using the aforementioned getter function instead.

Update: Resolved in pull request #38.

L-06 Inadequate Visibility of State Variables in
RedemptionReceiver Contract
The visibility of the state variables _subjects and _subjectsPending is set to private ,

posing a significant usability concern within the Forta Vault's claim functionality. This restricted

visibility forces users to depend excessively on the Forta Vault user interface to know the

remaining number of FORT tokens available for claim. Users might incorrectly conclude that

they have claimed all entitled tokens following the execution of the claimReedem function,

unaware that additional subjects may still be pending, awaiting the deadline for eligibility.

•

Forta Staking Vault Audit − Low Severity − 14

https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L179
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L179
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L188
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L188
https://github.com/NethermindEth/forta-staking-vault/pull/36
https://github.com/NethermindEth/forta-staking-vault/tree/ce87cffbf813e27cc83157933760b51fa44a1885/
file:///home/runner/work/audit-forta/audit-forta/reports/06-Forta--Staking-Vault/output/url
file:///home/runner/work/audit-forta/audit-forta/reports/06-Forta--Staking-Vault/output/url
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L42https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L42
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L42https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L42
https://github.com/NethermindEth/forta-staking-vault/pull/38
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L22
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L22
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L24
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L24
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L383

The claim function iterates through the _subjects array, verifying the timestamp against

_subjectsPending and checking if the subject is in a frozen state. When a subject meets all

the criteria, its stake is retrieved, it is then removed from the array, and its related entry in

_subjectsPending is eliminated. If a subject fails to meet the necessary conditions, it is

either because the user must have invoked the function past a certain deadline or because the

subject is currently frozen.

Consider providing public access or creating getter functions. This change would let users

independently verify their claimable tokens, reducing dependency on the Forta Vault UI and

mitigating the risk of misunderstandings regarding their token claims.

Update: Resolved in pull request #40.

L-07 Insufficient Code Coverage
The codebase exhibits insufficient code coverage for branches and functions (currently under

77%). This level of coverage may leave critical portions of the code untested, potentially

leading to undetected vulnerabilities.

Consider adding more unit tests to increase the code coverage to above 95%, adhering to

best practices for software security and reliability. In addition, integrating code coverage

tracking into the repository's Continuous Integration process is advised for ongoing quality

assurance.

Update: Acknowledged, will resolve. The Forta team stated:

We will improve it after merging all changes associated with other findings, so we can

make sure everything is well covered, especially all the branches.

L-08 Duplicate Utilization of FortaStakingUtils
Library
The project currently replicates the FortaStakingUtils library directly within its codebase

instead of leveraging the Forta contracts repository as an external dependency. This approach

introduces potential risks of inconsistencies between the version of the

FortaStakingUtils used in the project and the latest version available in the Forta

contracts repository. Such discrepancies could lead to unforeseen issues and complicate

maintenance and updates.

Forta Staking Vault Audit − Low Severity − 15

https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L76
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L76
https://github.com/NethermindEth/forta-staking-vault/pull/40
https://github.com/NethermindEth/forta-staking-vault/tree/ce87cffbf813e27cc83157933760b51fa44a1885/
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/utils/FortaStakingUtils.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/utils/FortaStakingUtils.sol
https://github.com/forta-network/forta-contracts/blob/51c9be4cf5430bc0061ec8577a16c0cf9c4d8df8/contracts/components/staking/FortaStakingUtils.sol
https://github.com/forta-network/forta-contracts/blob/51c9be4cf5430bc0061ec8577a16c0cf9c4d8df8/contracts/components/staking/FortaStakingUtils.sol

Consider integrating the Forta contracts repository as a dependency. This strategy ensures

that the project always utilizes the most current and consistent version of the

FortaStakingUtils .

Update: Resolved in pull request #42.

L-09 Insufficient Project Information in
README.md
The project's README.md file currently lacks substantial content and provides no specific

information about the project itself. It appears to be the default file automatically generated by

Foundry, which does not offer valuable insights or guidance for users or contributors.

Consider enriching the README.md with detailed project information, including its purpose,

features, installation procedures, usage examples, and contribution guidelines. This

enhancement will significantly improve the project's documentation, fostering a better

understanding of the system and potentially attracting more contributors or users.

Update: Resolved in pull request #57.

Notes & Additional
Information

N-01 Lack of Security Contact
Providing a specific security contact (such as an email or ENS name) within a smart contract

significantly simplifies the process for individuals to communicate if they identify a vulnerability

in the code. This practice is quite beneficial as it permits the code owners to dictate the

communication channel for vulnerability disclosure, eliminating the risk of miscommunication

or failure to report due to a lack of knowledge on how to do so. In addition, if the contract

incorporates third-party libraries and a bug surfaces in these, it becomes easier for the

maintainers of those libraries to make contact with the appropriate person about the problem

and provide mitigation instructions.

Forta Staking Vault Audit − Notes & Additional Information − 16

https://github.com/NethermindEth/forta-staking-vault/pull/42
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/README.md
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/README.md
https://github.com/NethermindEth/forta-staking-vault/pull/57

Throughout the codebase, there are contracts that do not have a security contact:

The FortaStakingUtils library.

The FortaStakingVault contract.

The IFortaStaking interface.

The IRewardsDistributor interface.

The InactiveSharesDistributor contract.

The OperatorFeeUtils library.

The RedemptionReceiver contract.

Consider adding a NatSpec comment containing a security contact above the contract

definitions. Using the @custom:security-contact convention is recommended as it has

been adopted by the OpenZeppelin Wizard and the ethereum-lists.

Update: Acknowledged, not resolved. The Forta team stated:

No security contact in Forta staking contracts to replicate. Forta users will surely use

Forta socials to get in touch.

N-02 Inadequate Function Visibility
Throughout the codebase, some functions are defined as public but are not being accessed

from the contract where they are defined:

In FortaStakingVault.sol :

The claimRewards function

The delegate function

The initiateUndelegate function

The undelegate function

All public functions in the RedemptionReceiver contract

All public functions in the InactiveSharesDistributor contract

When declaring a function as external, its parameters are not copied to memory; instead, they

are accessed directly from calldata. Calldata is a read-only, lower-cost area where function

arguments are stored. This means that accessing parameters in external functions can

consume less gas than accessing parameters in memory.

Consider changing the visibility of the aforementioned functions to external .

•

•

•

•

•

•

•

•

◦

◦

◦

◦

•

•

Forta Staking Vault Audit − Notes & Additional Information − 17

https://github.com/NethermindEth/forta-staking-vault/tree/ce87cffbf813e27cc83157933760b51fa44a1885/
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/utils/FortaStakingUtils.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/utils/FortaStakingUtils.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/interfaces/IFortaStaking.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/interfaces/IFortaStaking.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/interfaces/IRewardsDistributor.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/interfaces/IRewardsDistributor.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/utils/OperatorFeeUtils.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/utils/OperatorFeeUtils.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol
https://wizard.openzeppelin.com/
https://github.com/ethereum-lists/contracts#tracking-new-deployments
https://github.com/NethermindEth/forta-staking-vault/tree/ce87cffbf813e27cc83157933760b51fa44a1885/
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L157
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L157
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L179
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L179
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L201
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L201
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L233

Update: Resolved in pull request #44.

N-03 The Implemented Access Control Presents
Potential Risks for the Vault
The FortaStakingVault uses the AccessControlUpgradeable to incorporate two

rules within the vault: the OPERATOR_ROLE , which will be in charge of everything related to

the delegations, and the DEFAULT_ADMIN_ROLE , that is in charge of assigning and revoking

the latter role.

As the DEFAULT_ADMIN_ROLE is intended to be assigned to only one address, it is not

advisable to use the current AccessControlUpgradeable implementation. Using

AccessControlUpgradeable might not effectively prevent mistakes such as assigning the

admin role to multiple addresses, granting the role to a wrong address, or revoking its own role.

Consider using the AccessControlDefaultAdminRules contract as an alternative to

AccessControlUpgradeable . This allows only one account to possess the

DEFAULT_ADMIN_ROLE , ensuring better control. It also establishes a two-step process to

shift the DEFAULT_ADMIN_ROLE to a different account and includes a configurable delay

between the steps. An additional feature allows for the transfer to be canceled before its

acceptance. Furthermore, other roles cannot be utilized to manage the

DEFAULT_ADMIN_ROLE .

Update: Partially resolved in pull request #46. The current implementation does not specify an

initial delay; it defaults to zero. For enhanced readability and explicitness, we recommend using

__AccessControlDefaultAdminRules_init_unchained to set the initialDelay

and to grant the DEFAULT_ADMIN_ROLE .

N-04 Multiple Instances of Missing Named
Parameters in Mappings
Since Solidity 0.8.18, developers can utilize named parameters in mappings. This means

mappings can take the form of mapping(KeyType KeyName? => ValueType

ValueName?) . This updated syntax provides a more transparent representation of a

mapping's purpose.

Throughout the codebase, there are multiple mappings without named parameters:

The _assetsPerSubject state variable in the FortaStakingVault contract•

Forta Staking Vault Audit − Notes & Additional Information − 18

https://github.com/NethermindEth/forta-staking-vault/pull/44
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L5
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L5
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v5.0.1/contracts/access/extensions/AccessControlDefaultAdminRules.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v5.0.1/contracts/access/extensions/AccessControlDefaultAdminRules.sol
https://github.com/NethermindEth/forta-staking-vault/pull/46
https://github.com/ethereum/solidity/releases/tag/v0.8.18
https://github.com/NethermindEth/forta-staking-vault/tree/ce87cffbf813e27cc83157933760b51fa44a1885/
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L29
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L29
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol

The _subjectIndex state variable in the FortaStakingVault contract

The _subjectInactiveSharesDistributorIndex state variable in the

FortaStakingVault contract

The _subjectDeadline state variable in the FortaStakingVault contract

The _distributorSubject state variable in the FortaStakingVault contract

The _subjectsPending state variable in the RedemptionReceiver contract

The _distributorsPending state variable in the RedemptionReceiver contract

Consider adding named parameters to the mappings to improve the readability and

maintainability of the codebase.

Update: Acknowledged, not resolved.

N-05 Dependency on Polygon Mainnet Fork for
Testing
The project extensively relies on a fork of the Polygon mainnet to validate tests against the

current state of contracts intended for integration. While this approach has its merits, the

absence of a locally executable testing framework poses significant drawbacks. The

dependency on the Polygon mainnet fork requires a constant connection to an RPC endpoint

which increases the test execution times and introduces potential points of failure associated

with network reliability.

Consider implementing a comprehensive local testing environment. This environment should

simulate all external interactions, allowing for both integration tests with the mainnet fork and

independent local tests. Adopting this strategy will not only decrease testing durations by

eliminating network dependencies but also ensure that testing can proceed uninterrupted by

external network issues, thus streamlining the development and debugging processes.

Update: Acknowledged, not resolved.

N-06 Usage of msg.sender and _msgSender
Throughout the project, msg.sender is used to identify the sender of transactions. However,

all OpenZeppelin contracts, from whom the project's contracts inherit, employ _msgSender

instead. If the _msgSender function is overridden in the future, for example, to enable other

parties to cover the gas costs of transactions, this adaptation will not be accurately

represented in instances where msg.sender is used.

•

•

•

•

•

•

Forta Staking Vault Audit − Notes & Additional Information − 19

https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L31
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L31
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L34
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L34
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L35
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L35
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L36
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L36
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L24
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L24
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L25
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L25
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/test/FortaStakingVault.t.sol#L13

Consider either using _msgSender over msg.sender or documenting this distinction clearly

to avoid problems. This will help prevent problems if modifications in how the _msgSender

function works are introduced in the future.

Update: Resolved in pull request #48.

N-07 Typographical Errors
The following typographical errors were identified in the codebase:

FortaStakingVault.sol :

Line 19: "stategy" should be "strategy", and "forta" should be capitalized as

"Forta"

Line 169: "Overrided" should be "Overridden".

Line 290: "inmediatly" should be "immediately"

Line 291: "crated" should be "created"

Line 389: "an user" should be "a user"

InactiveSharesDistributor.sol :

Line 13: "Inactives shares" should be "Inactive shares"

Line 15: "invalidShares" should be "inactive shares"

Line 16: "transferrable" should be "transferable"

RedemptionReceiver.sol :

Line 34: "Initialiazes" should be "Initializes".

Consider resolving these typographical errors, as well as running an automated spelling/

grammar checker on the codebase and correcting any identified errors.

Update: Resolved in pull request #50.

N-08 Inconsistent Licensing
The project uses multiple licenses, MIT and UNLICENSED, which could cause legal or

operational issues.

•

◦

◦

◦

◦

◦

•

◦

◦

◦

•

◦

Forta Staking Vault Audit − Notes & Additional Information − 20

https://github.com/NethermindEth/forta-staking-vault/pull/48
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L19
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L145
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L290
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L291
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L389
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L13
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L15
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L16
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L34
https://github.com/NethermindEth/forta-staking-vault/pull/50
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L1
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/utils/OperatorFeeUtils.sol#L1

If this is unintentional, standardizing the license across the codebase is recommended to avoid

confusion. If intentional, clearly document the rationale for using multiple licenses and ensure

compatibility between them.

Update: Resolved in pull request #52.

N-09 Gas and Code Optimizations
Several opportunities for gas and code optimizations have been identified across various

functions and contracts, which could significantly improve efficiency and reduce execution

costs:

For Loop Optimization: Current implementations frequently recalculate array lengths

within for loop iterations (e.g., line 86 of the RedemptionReceiver contract and line

315 of the FortaStakingVault contract). Optimizing these loops by caching the

array length in a local variable before the loop starts can reduce gas costs and execution

times.

Redundant Validation Removal: The _validateIsOperator() function appears to

be redundant and could be replaced with onlyRole(OPERATOR_ROLE) for role

checking, simplifying the codebase and potentially saving gas.

Immutable State Variables: Several state variables, such as _token and staking , do

not change after contract initialization and thus could be declared as immutable and

set in the constructor instead of the initialize function. This change could lower

gas costs by reducing storage access.

Unnecessary Condition in undelegate : The undelegate function contains a

conditional check that is logically unnecessary. If vault shares are greater than zero, it

logically follows that vault assets cannot be equal to zero, making the if statement

redundant.

Local vs. State Variable Usage: Inconsistencies in using local versus state variables

have been noted. In this line, use the local variable assetsReceived both times to

avoid the unnecessary SLOAD operation.

Update: Partially resolved in pull request #53 and pull request #36. The third item on the list

was acknowledged by the Forta team.

•

•

•

•

•

Forta Staking Vault Audit − Notes & Additional Information − 21

https://github.com/NethermindEth/forta-staking-vault/pull/52
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/RedemptionReceiver.sol#L86
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L315
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L315
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L168
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L168
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L42C20-L42C26
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L42C20-L42C26
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L43
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/FortaStakingVault.sol#L43
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L73
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L73
https://github.com/NethermindEth/forta-staking-vault/blob/ce87cffbf813e27cc83157933760b51fa44a1885/src/InactiveSharesDistributor.sol#L81
https://github.com/NethermindEth/forta-staking-vault/pull/53
https://github.com/NethermindEth/forta-staking-vault/pull/36

Conclusion
The Forta Staking Vault introduces a way for users who do not want to get involved in all the

steps of the delegation of FORT tokens to pools of the Forta protocol to an operator, improving

the overall user experience.

One critical-severity and one high-severity issue were identified over the course of the audit:

The former arises from not overriding the mint function of the ERC-4626 contract, which

would lead to asset management issues, while the latter arises from how assets held by

contracts are tracked, which could lead to a temporary DoS of certain functionalities of the

vault.

During the fix review, the development team introduced a bug while addressing L01 - Tokens

Trapped in the Vault Might Cause Redemptions to Revert in Low FORT Liquidity Scenarios.

We believe this issue could have been detected by adhering to more rigorous testing practices.

We recommend that the Forta team resolve L-07 Insufficient Code Coverage, which they have

acknowledged. Additionally, we advise them to consistently verify that all state variables

modified in tests align with expected outcomes, including balances.

Several fixes and recommendations were also suggested to improve the readability and clarity

of the codebase and facilitate future audits, integrations, and development. Moreover, good

documentation practices were also suggested.

Forta Staking Vault Audit − Conclusion − 22

	Forta Staking Vault Audit
	Table of Contents
	Summary
	Scope
	System Overview
	RedemptionReceiver
	InactiveSharesDistributor

	Security Model and Trust Assumptions
	Privileged Roles

	Critical Severity
	Incomplete Implementation of ERC-4626 Base Contract Leading to Asset Management and Usability Issues

	High Severity
	Attacker Can Stall Undelegations

	Medium Severity
	Lack of Event Emissions
	Unbounded Loops in Redeem Function May Cause DoS
	Wrong and Incomplete Docstrings

	Low Severity
	Tokens Trapped in the Vault Might Cause Redemptions to Revert in Low FORT Liquidity Scenarios
	Not Checking if There Are Assets in the Vault to Redeem
	Lack of Input Validation
	Missing Return Values in Functions Impair Protocol Integration and Information Flow
	Redundant State Variable
	Inadequate Visibility of State Variables in RedemptionReceiver Contract
	Insufficient Code Coverage
	Duplicate Utilization of FortaStakingUtils Library
	Insufficient Project Information in README.md

	Notes & Additional Information
	Lack of Security Contact
	Inadequate Function Visibility
	The Implemented Access Control Presents Potential Risks for the Vault
	Multiple Instances of Missing Named Parameters in Mappings
	Dependency on Polygon Mainnet Fork for Testing
	Usage of msg.sender and _msgSender
	Typographical Errors
	Inconsistent Licensing
	Gas and Code Optimizations

	Conclusion

